Prove the identity √1 - tan²∅ ÷ cot²∅ - 1 = tan∅
Answers
Answered by
0
Answer:
The given equation is:
\frac{1+tan^2{\theta}}{1+cot^2{theta}}=(\frac{1-tan{\theta}}{1-cot{\theta}})^{2}1+cot2theta1+tan2θ=(1−cotθ1−tanθ)2
Taking the LHS of the above equation, we have
\frac{1+tan^2{\theta}}{1+cot^2{theta}}1+cot2theta1+tan2θ
=\frac{sec^2\theta}{cosec^2\theta}cosec2θsec2θ
=\frac{sin^2\theta}{cos^2\theta}cos2θsin2θ
=tan^2{\theta}tan2θ
Now, taking the RHS of the above equation, we have
(\frac{1-tan{\theta}}{1-cot{\theta}})^{2}(1−cotθ1−tanθ)2
=(\frac{1-tan{\theta}}{1-\frac{1}{tan\theta}})^{2}(1−tanθ11−tanθ)2
=(\frac{(1-tan{\theta})tan{\theta}}{-(1-tan{\theta})})^2(−(1−tanθ)(1−tanθ)tanθ)2
=tan^2{\theta}tan2θ
Hence, LHS=RHS, thus proved.
Similar questions