Prove the identity :
(1+tan²Ø)/(1+cot²Ø) = [(1-tanØ)/(1-cotØ)]²
Answers
Answered by
4
Answer:
/* Here I am using A instead of Ø */
/* By Trigonometric identities:
i) sec²A = 1+tan²A
ii) cosec²A = 1+cot²A */
Therefore,
•••♪
Answered by
2
Answer:
RHS=(1−cotA(1−tanA))2=(1−tanA1(1−tanA))2=(tanA−1tanA(1−tanA))2=(tanA−1−tanA(tanA−1))2=(−tanA)2=tan2A=cos2Asin2A=cosec2Asec2A
/* By Trigonometric identities:
i) sec²A = 1+tan²A
ii) cosec²A = 1+cot²A */
\begin{lgathered}=\frac{1+tan^{2}A}{1+cot^{2}A}\\=LHS\end{lgathered}=1+cot2A1+tan2A=LHS
Therefore,
\left(\frac{(1-tanA)}{1-cotA}\right)^{2}=\frac{1+tan^{2}A}{1+cot^{2}A}(1−cotA(1−tanA))2=1+cot2A1+tan2A
Similar questions