Prove the identity cosec theta costheta 2 1 cos theta 1+cos theta
Answers
Answered by
15
Answer:
Step-by-step explanation:
To Prove: (Cosecθ - Cotθ)² = 1 - Cosθ/1+Cosθ
L.H.S:
(Cosecθ - Cotθ)²
= (1/Sinθ - Cosθ/Sinθ)²
= (1 - Cosθ)²/Sin²θ
= (1 - Cosθ)²/ 1 - Cos²θ (∵ Sin²θ = 1 - Cos²θ)
= (1 - Cosθ)² / (1 + Cosθ)(1-Cosθ) (∵ denominator of form a² - b² = (a+b)(a-b))
= (1 - Cosθ)(1 - Cosθ) / (1 + Cosθ)(1 - Cosθ)
= 1 - Cosθ / 1 + Cosθ
= R.H.S
Hence proved.
Similar questions