Math, asked by suhan03, 3 months ago

prove the identity of the given sum​

Attachments:

Answers

Answered by tennetiraj86
6

Answer:

answer for the given problem is given

Attachments:
Answered by mathdude500
1

To Prove:-

 \tt \to \:\dfrac{sin \:  \theta - 2 {sin}^{3}\:  \theta }{2 {cos}^{3} \:  \theta - cos\:  \theta}  = tan\:  \theta

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\Large{\bold{\pink{\underline{Formula \:  Used \::}}}}  \end{gathered}

 \large \boxed{ \tt \:  \red{ ⟼ (1) \:  {sin}^{2} \:  \theta +  {cos}^{2} \:  \theta = 1}}

\large \boxed{ \tt \:  \red{ ⟼ (2)  \: \:\dfrac{sin\:  \theta}{cos\:  \theta}  = tan\:  \theta}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

 \tt \:  \to \:Consider \:  LHS \: \:\dfrac{sin \:  \theta - 2 {sin}^{3}\:  \theta }{2 {cos}^{3} \:  \theta - cos\:  \theta}

 \tt \:  ⟼   \: =  \: \dfrac{sin\:  \theta(1 - 2 {sin}^{2}\:  \theta )}{cos\:  \theta(2 {cos}^{2}\:  \theta - 1) }

 \tt \:  ⟼  \:  =  \: tan\:  \theta \:  \times \dfrac{1 -  {2(1 - cos}^{2} \:  \theta)}{ {2cos}^{2}\:  \theta - 1 }

 \tt \:  ⟼  \:  =  \: tan\:  \theta \times \dfrac{1 - 2 + 2 {cos}^{2} \:  \theta}{ {2cos}^{2} \:  \theta - 1}

 \tt \:  ⟼  \:  =  \: tan \:  \theta \times \dfrac{ \cancel{ {2cos}^{2} \:  \theta - 1}}{  \cancel{{2cos}^{2} \:  \theta - 1}}

 \tt \:  ⟼  \:  =  \: tan\:  \theta

 \tt \:  ➦ LHS = RHS

\large{\boxed{\boxed{\bf{Hence, Proved}}}}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large \red{\tt \:  ⟼ Explore \:  \:  more } ✍

Additional Information:-

Additional Information:- Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions