prove the identity secФ² (secФ²-2)+1=tanФ∧4
Answers
Answered by
2
LHS = secФ² (secФ²-2)+1
RHS =tanФ∧4
LHS=secФ² (secФ²-2)+1
= secФ² (secФ²-1-1)+1
= secФ² (tanФ²-1)+1
=(tanФ²+1)(tanФ²-1)+1
=tanФ^4-1+1
=tanФ^4
= RHS
proved
RHS =tanФ∧4
LHS=secФ² (secФ²-2)+1
= secФ² (secФ²-1-1)+1
= secФ² (tanФ²-1)+1
=(tanФ²+1)(tanФ²-1)+1
=tanФ^4-1+1
=tanФ^4
= RHS
proved
lifeislife:
gooddddddd :)
Similar questions