Math, asked by arup3ahfh4pooro, 1 year ago

Prove the identity: (sec A-cos A).(cot A+tan A)=sec A.tanA

Answers

Answered by MaheswariS
19

\underline{\textbf{To prove:}}

\mathsf{(secA-cosA)\,(cotA+tanA)=secA\,.\,tanA}

\underline{\textbf{Solution:}}

\mathsf{Consider,}

\mathsf{(secA-cosA)\,(cotA+tanA)}

\textsf{This can be written as,}

\mathsf{=\left(\dfrac{1}{cosA}-cosA\right)\,\left(\dfrac{cosA}{sinA}+\dfrac{sinA}{cosA}\right)}

\mathsf{=\left(\dfrac{1-cos^2A}{cosA}\right)\,\left(\dfrac{cos^2A+sin^2A}{sinA\,cosA}\right)}

\mathsf{Using}\;\boxed{\mathsf{sin^2\theta+cos^2\theta=1}}

\mathsf{=\dfrac{sin^2A}{cosA}\,\left(\dfrac{1}{sinA\,cosA}\right)}

\mathsf{=\dfrac{sinA}{cosA}\,\left(\dfrac{1}{cosA}\right)}

\mathsf{=tanA\,secA}

\mathsf{=secA\,tanA}

\implies\boxed{\mathsf{(secA-cosA)\,(cotA+tanA)=secA\,\,tanA}}

Answered by ranjanamishra0078
3

Step-by-step explanation:

Hey mates .

for solution check out the attachment

Attachments:
Similar questions