Math, asked by rtranijaya, 1 year ago

Prove the identity (sin theta + 1- cos theta) /(cos theta -1+sin theta) =( 1+sin theta) /cos theta

Answers

Answered by Vibs123
0
First, we can consider 

sinx−cosx+1/sinx+cosx−1
=(sinx−cosx+1)(sinx+cosx+1)/(sinx+cosx−1)(sinx+cosx+1)
Thus, the numerator can be written as 
= (sinx−cosx)(sinx+cosx)+sinx−cosx+sinx+cosx+1
= (sinx)2−(cosx)2+2sinx+1(sinx)2−(cosx)2+2sinx+1
= 2(sinx)2+2sinx=2sinx(1+sinx)2(sinx)2+2sinx=2sinx(1+sinx) ----------- (I)  

Whereas, the denominator can be written as 
= (sinx+cosx)2−1(sinx+cosx)2−1 
= (sinx)2+2sinxcosx+(cosx)2−1=2sinxcosx(sinx)2+2sinxcosx+(cosx)2−1=2sinxcosx ---------- (II)

Hence, (I) / (II) = (1 + sin x)/(cos x) (thus the trigonometric identity is proven). 

I hope that helps!
Similar questions