prove the identity (sin theta+cosec theta)²+(cos theta+sec theta)²=7+tan²theta+cot²theta
Answers
Answered by
1
Answer:
- (Sinθ+cosecθ)²+(cosθ+secθ)² = 7+tan²θ+cot²θ
- LHS=RHS
↬ Consider the LHS of the equation
↬ LHS=
(sinθ+cosecθ)²+(cosθ+secθ)²
= sin²θ+cosec²θ+2sinθcosecθ + cos²θ+sec²θ+2cosθsecθ
= sin²θ+cos²θ+2sinθcosecθ+cosec²θ+sec²θ+2cosθsecθ
= 1+2×1+(1+cot²θ)+(1+tan²θ)+2×1
= 1+2+1+1+2+cot²θ+tan²θ
= 7+tan²θ+cot²θ
= RHS
↬ Hence proved
↬ (a+b)²= a²+b²+2ab
↬ sin²θ+cos²θ = 1
↬ sinθcosecθ = 1
↬ cosec²θ = 1+cot²θ
↬ sec²θ =1+tan²θ
↬ cosθsecθ = 1
Similar questions
Accountancy,
4 months ago
Social Sciences,
8 months ago
Biology,
11 months ago
Math,
11 months ago
English,
11 months ago