Math, asked by tatendag8464, 10 months ago

Prove the identity sin5 theta/sin theta -cos 5 theta/cos theta is equal to 4 cos 2 theta

Answers

Answered by amitnrw
4

Given :   Sin5θ/Sinθ  - Cos5θ/Cosθ  = 4Cos2θ

To Find :  Prove the identity

Solution:

Sin5θ/Sinθ  - Cos5θ/Cosθ  = 4Cos2θ

LHS =

Sin5θ/Sinθ  - Cos5θ/Cosθ

=  (Sin5θCosθ - Cos5θSinθ)/SinθCosθ

Using Sin(A - B) = SinACosB - CosASinB

= Sin(5θ -θ)/SinθCosθ

= Sin4θ /SinθCosθ

Using Sin2x = 2SinxCosx

= 2Sin2θCos2θ/SinθCosθ

= 2(2SinθCosθ).Cos2θ/SinθCosθ

= 2(2)Cos2θ

= 4Cos2θ

= RHS

QED

Hence Proved

Sin5θ/Sinθ  - Cos5θ/Cosθ  = 4Cos2θ

Learn More:

Prove that: (sin3x+sinx)sinx+(cos3x-cosx)cosx=0

brainly.in/question/6631850

sinx-sin5x+sin9x-sin13x/cosx-cos5x -cos9x+cos13x= cot 4x

brainly.in/question/12448751

Answered by ajayajay96
0

Answer:

Step-by-step explanation:

Similar questions