Math, asked by yatemsingjamei, 1 month ago

prove the identity sinA (1 + tanA ) + cosA (1 + cotA) = secA + cosecA​

Answers

Answered by senboni123456
0

Answer:

Step-by-step explanation:

We have,

\tt{sin(A)\,(1+tan(A))\,+cos(A)\,(1+cot(A))}

\sf{=sin(A)\,\bigg\{1+\dfrac{sin(A)}{cos(A)}\bigg\}\,+cos(A)\,\bigg\{1+\dfrac{cos(A)}{sin(A)}\bigg\}}

\sf{=sin(A)\,\bigg\{\dfrac{cos(A)+sin(A)}{cos(A)}\bigg\}\,+cos(A)\,\bigg\{\dfrac{sin(A)+cos(A)}{sin(A)}\bigg\}}

\sf{=\dfrac{sin(A)}{cos(A)}\,\{sin(A)+cos(A)\}\,+\dfrac{cos(A)}{sin(A)}\,\{sin(A)+cos(A)\}}

\sf{=tan(A)\,\{sin(A)+cos(A)\}\,+cot(A)\,\{sin(A)+cos(A)\}}

\sf{=\{sin(A)+cos(A)\}\{tan(A)+cot(A)\}}

\sf{=\{sin(A)+cos(A)\}\,\bigg\{\dfrac{sin(A)}{cos(A)}+\dfrac{cos(A)}{sin(A)}\bigg\}}

\sf{=\{sin(A)+cos(A)\}\,\bigg\{\dfrac{sin^2(A)+cos^2(A)}{cos(A)\,sin(A)}\bigg\}}

\sf{=\{sin(A)+cos(A)\}\,\bigg\{\dfrac{1}{cos(A)\,sin(A)}\bigg\}}

\sf{=\dfrac{sin(A)+cos(A)}{cos(A)\,sin(A)}}

\sf{=\dfrac{sin(A)}{cos(A)\,sin(A)}+\dfrac{cos(A)}{cos(A)\,sin(A)}}

\sf{=\dfrac{1}{cos(A)}+\dfrac{1}{sin(A)}}

\sf{=sec(A)+cosec(A)}

Similar questions