Math, asked by sneha123448, 4 months ago

prove the identity
tan^2A - tan ^2B =sin^2A-sin^2B/cos^2Acos^2B=sec^2A-sec^2B​

Attachments:

Answers

Answered by nikitao4
3

Hey mate here's ur answer!

HOPE IT WILL HELP U!

PLEASE MARK ME BRAINLIEST!

Attachments:
Answered by Darkrai14
2

To prove:-

\rm tan^2 \ A - tan^2 \ B = \dfrac{sin^2 \ A \sin^2 B}{\cos^2 A \cos^2 B} = \sec^2 A - \sec^2 B

Solution:-

1.)

• tan A = \dfrac{\sin A}{\cos A}

\rm \dashrightarrow tan^2 \ A - tan^2 \ B = \dfrac{\sin^2 A}{\cos^2 A}-\dfrac{\sin^2 B}{\cos^2 B}

\rm \dashrightarrow  \dfrac{\sin^2 A \cos^2 B - \sin^2 B \cos^2 A}{\cos^2 A \cos^2 B}

cos² A = 1 - sin² A

\rm \dashrightarrow  \dfrac{\sin^2 A (1-\sin^2 B) - \sin^2 B (1-\sin^2 A)}{\cos^2 A \cos^2 B}

\rm \dashrightarrow  \dfrac{\sin^2 A - \sin^2 A \sin^2 B - \sin^2 B + \sin^2 A \sin^2 B}{\cos^2 A \cos^2 B}

\rm \dashrightarrow  \dfrac{\sin^2 A - \sin^2 B }{\cos^2 A \cos^2 B}

= LHS

2.) tan² A - tan² B = sec² A - sec² B

tan² A = sec² A -1

→ (sec² A - 1) - (sec² B - 1)

→ sec² A - 1 - sec² B + 1

→ sec² A - sec² B = LHS

\therefore \rm\tan^2 A - \tan^2 B = \dfrac{\sin^2 A - \sin^2 B}{\cos^2 A \cos^2 B} = \sec^2 A - \sec^2 B

Hence, proved.

Similar questions