Math, asked by maitrijaggi, 6 months ago

Prove the identity
tanA/1+secA - tanA/1-secA=2cosecA

Answers

Answered by Ataraxia
10

To Prove :-

\sf \dfrac{tanA}{1+secA}- \dfrac{tanA}{1-secA}= 2cosecA

Solution :-

\sf L.H.S = \dfrac{tanA}{1+secA} -\dfrac{tanA}{1-secA}

       = \sf \dfrac{tan(1-secA)-tanA(1+secA)}{(1+secA)(1-secA)} \\\\= \dfrac{tanA-tanAsecA-tanA-tanAsecA}{1-sec^2A} \\\\= \dfrac{-2tanAsecA}{1-sec^2A}

Multiply the numerator and denominator by -1.

       = \sf \dfrac{2tanAsecA}{sec^2A-1}

\bullet \bf \ sec^2A-1 = tan^2A

        = \sf \dfrac{2tanAsecA}{tan^2A} \\\\= \dfrac{2secA}{tanA}

\bullet \bf \ secA = \dfrac{1}{cosA} \\\\\bullet \ tanA = \dfrac{sinA}{cosA}

         = \sf \dfrac{\dfrac{2}{cosA}}{\dfrac{sinA}{cosA}} \\\\= \dfrac{2}{cosA} \times \dfrac{cosA}{sinA} \\\\= 2 \times \dfrac{1}{sinA} \\\\= 2 cosecA

Hence proved.

Answered by sandy1816
3

 \frac{tanA}{1 + secA}  -  \frac{tanA}{1 - secA}  \\  \\  = tanA( \frac{1}{1 + secA  }  -  \frac{1}{1 - secA} ) \\  \\  = tanA( \frac{1 - secA - 1 - secA}{1 -  {sec}^{2} A}  )\\  \\  = tanA( \frac{ - 2secA}{ -  {tan}^{2}A } ) \\  \\  = 2 \frac{secA}{tanA}  \\  \\  =  2 \:  \frac{1}{cosA} . \frac{cosA}{sinA}  \\  \\  = 2cosecA

Similar questions