Math, asked by Dimple112, 4 months ago

Prove the identity:

\rm{1-\cfrac{sin^2x}{1+cot\;x}-\dfrac{cos^2x}{1+tan\;x}=sin\;x.cos\;x}

Answers

Answered by vandana2601
2

Answer:

hope it helps you please mark me as brainlist

Attachments:
Answered by wtfhrshu
54

S O L U T I O N :

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Consider LHS;

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{1-\dfrac{sin^2x}{1+cot\;x}-\dfrac{cos^2x}{1+tan\;x}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=1-\dfrac{sin^2x}{1+\dfrac{cos\;x}{sin\;x}}-\dfrac{cos^2x}{1+\dfrac{sin\;x}{cos\;x}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=1-\dfrac{sin^3x}{sin\;x+cos\;x}-\dfrac{cos^3x}{sin\;x+cos\;x}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=\dfrac{sin\;x+cos\;x-(sin^3x-cos^3x)}{sin\;x+cos\;x}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=\dfrac{(sin\;x+cos\;x)-(sin\;x+cos\;x)(sin^2x-sin\;x\;cos\;x+cos^2x)}{sin\;x+cos\;x}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=\dfrac{(sin\;x+cos\;x)-(sin\;x+cos\;x)(1-sin\;x\;cos\;x)}{sin\;x+cos\;x}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=\dfrac{(sin\;x+cos\;x)(1-(1-sin\;x.cos\;x))}{(sin\;x+cos\;x)}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=1-(1-sin\;x.cos\;x)}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=1-1+sin\;x.cos\;x}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=sin\;x.cos\;x}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

RHS;

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bf{=sin\;x.cos\;x}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

∴ LHS = RHS,

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

Hence, proved.

Similar questions