Prove the identity x^3 + y^3 + z^3 - 2xyz = ( x+y+z) (x^2 + y^2 + z^2 - xy - yz -XX)
Answers
Answered by
1
Using (x−y)2≥0(x−y)2≥0 one gets x2+y2≥2xyx2+y2≥2xy. Since each xx, yy, and zz are positive, the following three equations can be obtained
x3+xy2≥2x2yx3+xy2≥2x2yx2y+y3≥2xy2x2y+y3≥2xy2x2z+y2z≥2xyzx2z+y2z≥2xyz
Add these three gives the following:
A. x3+y3+x2z+y2z≥x2y+xy2+2xyzx3+y3+x2z+y2z≥x2y+xy2+2xyz
Similarly starting from (y−z)2≥0(y−z)2≥0 the following three equations can be obtained
y3+yz2≥2y2zy3+yz2≥2y2zy2z+z3≥2yz2y2z+z3≥2yz2y2x+z2x≥2xyzy2x+z2x≥2xyz
Add these three gives the following:
B. y3+z3+y2x+z2x≥y2z+yz2+2xyzy3+z3+y2x+z2x≥y2z+yz2+2xyz
Similarly starting from (z−x)2≥0(z−x)2≥0 the following three equations can be obtained
z3+zx2≥2z2xz3+zx2≥2z2xz2x+x3≥2zx2z2x+x3≥2zx2z2y+x2y≥2xyzz2y+x2y≥2xyz
Add these three gives the following:
B. z3+x3+z2y+x2y≥z2x+zx2+2xyzz3+x3+z2y+x2y≥z2x+zx2+2xyz
Adding adding equations A, B and C gives
2(x3+z3+x3)≥6xyz2(x3+z3+x3)≥6xyz
or
x3+z3+x3≥3xyz
x3+xy2≥2x2yx3+xy2≥2x2yx2y+y3≥2xy2x2y+y3≥2xy2x2z+y2z≥2xyzx2z+y2z≥2xyz
Add these three gives the following:
A. x3+y3+x2z+y2z≥x2y+xy2+2xyzx3+y3+x2z+y2z≥x2y+xy2+2xyz
Similarly starting from (y−z)2≥0(y−z)2≥0 the following three equations can be obtained
y3+yz2≥2y2zy3+yz2≥2y2zy2z+z3≥2yz2y2z+z3≥2yz2y2x+z2x≥2xyzy2x+z2x≥2xyz
Add these three gives the following:
B. y3+z3+y2x+z2x≥y2z+yz2+2xyzy3+z3+y2x+z2x≥y2z+yz2+2xyz
Similarly starting from (z−x)2≥0(z−x)2≥0 the following three equations can be obtained
z3+zx2≥2z2xz3+zx2≥2z2xz2x+x3≥2zx2z2x+x3≥2zx2z2y+x2y≥2xyzz2y+x2y≥2xyz
Add these three gives the following:
B. z3+x3+z2y+x2y≥z2x+zx2+2xyzz3+x3+z2y+x2y≥z2x+zx2+2xyz
Adding adding equations A, B and C gives
2(x3+z3+x3)≥6xyz2(x3+z3+x3)≥6xyz
or
x3+z3+x3≥3xyz
Similar questions