Math, asked by Dollyleimapokpam, 1 month ago

prove the idevtity 1+cos theta \1-cos theta = (cosec theta + cot theta)​

Answers

Answered by Anonymous
53

 \underline{ \underline{ \bf \: Given \: to \: prove \: that}}

  \sqrt{\bf \dfrac{1 + cos \theta}{1 - cos \theta}  = cosec \theta + cot \theta}

Required Explanation :-

Take L.H.S

  \sqrt{\rm \dfrac{1 + cos \theta}{1 - cos \theta} }

Multiplying and dividing with conjugate of denominator

Conjugate of 1-cosθ is 1+cosθ

  \sqrt{\rm \dfrac{1 + cos \theta}{1 - cos \theta}  \times \rm \dfrac{1 + cos \theta}{1  + cos \theta} }

  \sqrt{\rm \dfrac{(1 + cos \theta)(1 + cos \theta)}{(1 + cos \theta)( 1 - cos \theta)} }

  \sqrt{\rm \dfrac{(1 + cos \theta) {}^{2} }{(1 + cos \theta)( 1 - cos \theta)} }

\bigg\{\rm\red{Numerator\: is \:in \: form \: (a + b)^2 = a^2+2ab+b^2}\bigg\}

\bigg\{\rm\red{Denominator\: is \:in \: form \: (a + b)(a-b) = a^2-b^2}\bigg\}

  \sqrt{ \rm \dfrac{(1 ) {}^{2} + cos {}^{2}  \theta  + 2cos \theta }{1  - cos {}^{2}  \theta} }

 \sqrt{\rm \dfrac{(1 ) {}^{2} + cos {}^{2}  \theta  + 2cos \theta }{sin {}^{2} \theta }  \:  \: }  \:  \bigg \{ \red{1 - cos {}^{2}  \theta = sin {}^{2} \theta } \bigg \}

Dividing with sin² theta for each term .

  \sqrt{\rm \:  \dfrac{1}{sin {}^{2}  \theta}  +  \dfrac{cos {}^{2} \theta }{sin {}^{2} \theta }  +  \dfrac{2cos \theta}{sin {}^{2}  \theta} }

  \sqrt{\rm \:   cosec {}^{2} \theta   + cot {}^{2} \theta   +  \dfrac{2cos \theta}{sin {} \theta} \times  \dfrac{1}{sin \theta}  }

 \bigg \{ \red{  \rm\dfrac{1}{sin \theta}  = csc \theta \: , \dfrac{cos \theta}{sin \theta} = cot \theta \:  } \bigg \}

  \sqrt{\rm \:   cosec {}^{2} \theta   + cot {}^{2} \theta   +  2cot \theta \times  cosec \theta }

  \sqrt{\rm \:   cosec {}^{} \theta   + cot \theta) {}^{2}  } \bigg\{\rm\red{a^2+b^2+2ab= (a+b)^2}\bigg\}

 =  \rm \: csc \theta + cot \theta

\mathfrak\red{Hence \:proved !}

Answered by mathdude500
26

Appropriate Question :

Prove the identity

\rm :\longmapsto\:\dfrac{1 + cos\theta }{1 - cos\theta }  =  {(cosec\theta  + cot\theta )}^{2}

 \green{\large\underline{\sf{Solution-}}}

Consider, LHS

\rm :\longmapsto\:\dfrac{1 + cos\theta }{1 - cos\theta }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1 + cos\theta }{1 - cos\theta }  \times \dfrac{1 + cos\theta }{1 + cos\theta }

We know

\boxed{ \tt{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{ {(1 + cos\theta )}^{2} }{ {1}^{2}  -  {cos}^{2} \theta }

\rm \:  =  \: \dfrac{ {(1 + cos\theta )}^{2} }{ 1  -  {cos}^{2} \theta }

We know

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So, using this identity, we get

\rm \:  =  \: \dfrac{ {(1 + cos\theta )}^{2} }{ {sin}^{2} \theta }

\rm \:  =  \:  {\bigg[\dfrac{1 + cos\theta }{sin\theta } \bigg]}^{2}

\rm \:  =  \:  {\bigg[ \dfrac{1}{sin\theta }   + \dfrac{cos\theta }{sin\theta } \bigg]}^{2}

\rm \:  =  \:  {(cosec\theta  + cot\theta )}^{2}

Hence,

\rm \implies\:\boxed{ \tt{ \: \dfrac{1 + cos\theta }{1 - cos\theta }  =  {(cosec\theta  + cot\theta )}^{2}  \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions