Math, asked by haseenaakbar75, 6 months ago

prove the image attached above...

please don't answer If you don't know ​

Attachments:

Answers

Answered by bswagatam04
1

\sqrt{\frac{secA-tanA}{secA+tanA} }

Multiply numerator and denominator with secA-tanA

We get,

\sqrt{\frac{(secA-tanA)^{2} }{(secA- tanA)(secA+tanA) } }

Now using the formula (a-b)(a+b)=a^{2}- b^{2}

\sqrt{\frac{(secA-tanA)^{2} }{sec^{2}A- tan^{2}A } }

We know that {sec^{2}A- tan^{2}A } }

So, \sqrt{\frac{(secA-tanA)^{2} }{sec^{2}A- tan^{2}A } } =secA-tanA

Hence, LHS=RHS

Similar questions