Math, asked by choudhurynargis87, 2 months ago

Prove the law of logarithm with example ​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

 \rm \: Let \:  \:  log_{a}(m)  =  \alpha  \:  \: and \:  \:  log_{a}(n)  =  \beta

 \rm \:  \implies \: m  =  {a}^{ \alpha }  \:  \: and \:  \: n =  {a}^{ \beta }  \\

Now,

  \rm \: log_{a}(mn)  =  log_{a}( {a}^{ \alpha }. {a}^{ \beta }  )

  \rm \implies \: log_{a}(mn)  =  log_{a}( {a}^{ \alpha  +  \beta }  )

  \rm \implies \: log_{a}(mn)  =   (\alpha  +  \beta )log_{a}(a  )

  \rm \implies \: log_{a}(mn)  =   (\alpha  +  \beta ).1

  \rm \implies \: log_{a}(mn)  =   \alpha  +  \beta

  \rm \implies \: log_{a}(mn)  =    log_{a}(m)   +   log_{a}(n)

Similar questions