Prove: the lengths of two tangents drawn from an external point to a circle are equal.
answer me......................
Answers
Answer:
Given: A circle with centre O; PA and PB are two tangents to the circle drawn from an external point P.
To prove: PA = PB
Construction: Join OA, OB, and OP.
It is known that a tangent at any point of a circle is perpendicular to the radius through the point of contact.
OA⊥PA
OB⊥PB
In △OPA and △OPB
∠OPA=∠OPB (Using (1))
OA=OB (Radii of the same circle)
OP=OP (Common side)
Therefor △OPA≅△OPB (RHS congruency criterion)
PA=PB
(Corresponding parts of congruent triangles are equal)
Thus, it is proved that the lengths of the two tangents drawn from an external point to a circle are equal.
The length of tangents drawn from any external point are equal.
So statement is correct..
plz mark as brainlest
Step-by-step explanation:
HEY MATE ...
Given: A circle with centre O;
PA and PB are two tangents to the circle drawn from an external point P.
To prove: PA = PB
Construction: Join OA, OB, and OP.It is known that a tangent at any point of a circle is perpendicular to the radius through the point of contact.
OA⊥PA,
OB⊥PB
In △OPA and △OPB∠OPA=∠OPB (Using (1))
OA=OB (Radii of the same circle)
OP=OP (Common side)Therefor △OPA≅△OPB (RHS congruency criterion)
PA=PB(Corresponding parts of congruent triangles are equal)
Thus, it is proved that the lengths of the two tangents drawn from an external point to a circle are equal.
The length of tangents drawn from any external point are equal.So statement is correct..
HOPE IT HELPS YOU
HOPE IT HELPS YOU 30 THANKS + FOLLOW =INBOX