Prove the order of preservation theorem..
Answers
Answer:
The preservation theorem a result in classical model theory, states that a first-order formula is preserved under homomorphisms on all structures (finite and infinite) if and only if it is equivalent to an existential-positive formula.
G⊨⇁ΦandG→G′⇒G′⊨⇁Φ
The homomorphism preservation theorem (h.p.t.), a result in classical model theory, states that a first-order formula is preserved under homomorphisms on all structures (finite and infinite) if and only if it is equivalent to an existential-positive formula. Answering a long-standing question in finite model theory, we prove that the h.p.t. remains valid when restricted to finite structures (unlike many other classical preservation theorems, including the Łoś--Tarski theorem and Lyndon's positivity theorem). Applications of this result extend to constraint satisfaction problems and to database theory via a correspondence between existential-positive formulas and unions of conjunctive queries. A further result of this article strengthens the classical h.p.t.: we show that a first-order formula is preserved under homomorphisms on all structures if and only if it is equivalent to an existential-positive formula of equal quantifier-rank.
Or kese ho bhale manusya ?¿