Prove the polynomial
(x²-1)³ = x⁶-3x⁴+3x²-1
Answers
Answered by
2
(x² - 1)³ = x⁶- 3x⁴ + 3x² - 1
LHS :
We know that ( a - b )³ = ( a - b ) ( a - b )² .
( x² - 1 )³ = ( x² - 1 ) ( x² - 1 )² { ( a - b )² = a² + b² - 2ab }
= ( x² - 1 ) ( x⁴ + 1 - 2x² )
= x⁶ + x² - 2x⁴ - x⁴ - 1 + 2x²
= x⁶ - 3x⁴ + 3x² - 1
Hence , LHS = RHS .
Answered by
3
Step-by-step explanation:
using identity
(a-b) ^3= a^3 - b^3 - 3a^2b + 3ab^2
Solving L. H. S=
(x^2-1)^3
= (x^2)^3 - 1^3 - 3(x^2)^2+ 3(x^2)(1)^2
=x^6 - 1 - 3x^4 + 3x^2
=x^6 - 3x^4 + 3x^2 - 1
HENCE ,
L.H.S=R.H.S
Similar questions