prove the problems given below
Answers
Solution ( i ) :-
We need to prove ,
- sin²α - cos²β = sin²β - cos²α
Simplifying ,
⇒ sin²α - cos²β = sin²β - cos²α
⇒ sin²α + cos²α = sin²β + cos²β
⇒ 1 = 1 [ ∵ sin²A + cos²A = 1 ]
• LHS = RHS
Hence , proved .
_________________________
Solution ( ii ) :-
We need to prove ,
- tanθ ( √ 1 - sin²θ ) = sinθ
Taking LHS and substituting ,
• √ 1 - sin²θ = cosθ
⇒ tanθ ( cosθ )
Substituting ,
• tanθ = sinθ/cosθ
⇒ [ sinθ/cosθ ] [ cosθ ]
⇒ sinθ
Now , comparing with RHS
⇒ sinθ = sinθ
• LHS = RHS
Hence , proved .
_________________________
Solution ( iii ) :-
We need to prove ,
- ( 1 - cos²θ ) cosec²θ = 1
Taking LHS & simplifying ,
⇒ ( 1 - cos²θ ) cosec²θ
⇒ sin²θ × cosec²θ [ ∵ 1 - cos²A = sin²A ]
⇒ sin²θ × ( 1/sin²θ ) [ ∵ cosec²A = 1/sin²A ]
⇒ 1
Now , comparing with RHS
⇒ 1 = 1
• LHS = RHS
Hence , proved .
_________________________
Solution ( iv ) :-
We need to prove ,
- ( 1 + tanA )² + ( 1 - tanA )² = 2sec²A
Taking LHS and simplifying using
• ( a + b )² = a² + b² + 2ab
• ( a - b )² = a² + b² - 2ab
⇒ 1² + tan²A + 2 ( 1 ) ( tanA ) + 1² + tan²A - 2 ( 1 ) ( tanA )
⇒ 1 + tan²A + 2tanA + 1 + tan²A - 2tanA
⇒ sec²A + sec²A [ ∵ 1 + tan²A = sec²A ]
⇒ 2sec²A
Now, comparing with RHS
⇒ 2sec²A = 2sec²A
• LHS = RHS
Hence , proved
_________________________
Solution ( v ) :-
We need to prove ,
- cos²β + ( 1/1 + cot²β ) = 1
Taking LHS & simplifying ,
⇒ cos²β + ( 1/cosec²β ) [ ∵ 1 + cot²A = csc²A ]
⇒ cos²β + sin²β [ ∵ 1/cosec²β = sin²β ]
⇒ 1 [ ∵ sin²A + cos²A = 1 ]
Now , comparing with RHS
⇒ 1 = 1
• LHS = RHS
Hence , proved .