Math, asked by samrushah21, 7 months ago

prove the problems given below

Attachments:

Answers

Answered by ItzArchimedes
3

Solution ( i ) :-

We need to prove ,

  • sin²α - cos²β = sin²β - cos²α

Simplifying ,

⇒ sin²α - cos²β = sin²β - cos²α

⇒ sin²α + cos²α = sin²β + cos²β

1 = 1 [ sin²A + cos²A = 1 ]

LHS = RHS

Hence , proved .

_________________________

Solution ( ii ) :-

We need to prove ,

  • tanθ ( √ 1 - sin²θ ) = sinθ

Taking LHS and substituting ,

• √ 1 - sin²θ = cosθ

⇒ tanθ ( cosθ )

Substituting ,

• tanθ = sinθ/cosθ

⇒ [ sinθ/cosθ ] [ cosθ ]

sinθ

Now , comparing with RHS

sinθ = sinθ

LHS = RHS

Hence , proved .

_________________________

Solution ( iii ) :-

We need to prove ,

  • ( 1 - cos²θ ) cosec²θ = 1

Taking LHS & simplifying ,

⇒ ( 1 - cos²θ ) cosec²θ

⇒ sin²θ × cosec²θ [ 1 - cos²A = sin²A ]

⇒ sin²θ × ( 1/sin²θ ) [ cosec²A = 1/sin²A ]

1

Now , comparing with RHS

1 = 1

LHS = RHS

Hence , proved .

_________________________

Solution ( iv ) :-

We need to prove ,

  • ( 1 + tanA )² + ( 1 - tanA )² = 2sec²A

Taking LHS and simplifying using

• ( a + b )² = a² + b² + 2ab

• ( a - b )² = a² + b² - 2ab

⇒ 1² + tan²A + 2 ( 1 ) ( tanA ) + 1² + tan²A - 2 ( 1 ) ( tanA )

⇒ 1 + tan²A + 2tanA + 1 + tan²A - 2tanA

⇒ sec²A + sec²A [ 1 + tan²A = sec²A ]

2sec²A

Now, comparing with RHS

2sec²A = 2sec²A

LHS = RHS

Hence , proved

_________________________

Solution ( v ) :-

We need to prove ,

  • cos²β + ( 1/1 + cot²β ) = 1

Taking LHS & simplifying ,

⇒ cos²β + ( 1/cosec²β ) [ 1 + cot²A = csc²A ]

⇒ cos²β + sin²β [ 1/cosec²β = sin²β ]

1 [ sin²A + cos²A = 1 ]

Now , comparing with RHS

1 = 1

LHS = RHS

Hence , proved .

Similar questions