French, asked by 7TeeN, 11 months ago

prove the property of beta function​

Answers

Answered by anuanku
4

Answer:

A Note on the Beta Function And Some Properties

of Its Partial Derivatives

Nina Shang, Aijuan Li, Zhongfeng Sun, and Huizeng Qin

Abstract—In this paper, the partial derivatives Bp,q(x, y) =

q+p

∂xp∂yq B(x, y) of the Beta function B(x, y) are expressed in

terms of a finite number of the Polygamma function, where p

and q are non-negative integers, x and y are complex numbers.

In particular, Bp,q(x, y) can be expressed by the Riemann zeta

function if x is equal to n or n +

1

2

and y is equal to m

or m +

1

2

, where n and m are integers. Furthermore, many

integral functions associated with B(x, y) and Bp,q(x, y) can

be expressed as the closed forms.

Index Terms—Riemann zeta function, Beta function, Gamma

function, Polygamma function, Digamma function, closed form.

I. INTRODUCTION

I

N mathematics, the Beta function was studied by Euler

and Legendre as a special function. It is usually defined

by

B(x, y) = ∫ 1

0

t

x−1

(1 − t)

y−1

dt (1)

for Rex > 0 and Rey > 0. It is often applied in many fields

such as mathematical equations and probability theory. Its

definition was extended to complex numbers values of x and

y by using the neutrix limit in [1]. Furthermore, the partial

derivatives of the Beta function on the complex numbers x

and y exist a close relationship with many special functions

and special integrals. For example, the following relation was

proved in [2]

∫ 1

0

t

x−1

(1 − t)

y−1

lnp

tlnq

(1 − t)dt = Bp,q(x, y) (2)

for integers p, q > 0 and q + Rex, p + Rey > 0, where

Bp,q(x, y) = ∂

p+q

∂xp∂yq B(x, y). Moreover, K. S. KOlbig gave ¨

the closed expressions of (2) for x = 0 and y = 1 in [3].

Putting t = sin2 u in (2), we have

∫ π

2

0

sin2x−1 u cos2y−1 u lnp

sin u lnq

cos udu

= 2−p−q−1Bp,q(x, y).

(3)

K. S. KOlbig also gave the closed expression of (3) for ¨ x =

y =

1

2

in [4]. Note that the most effective way of computing

(1) and (2) is based on power series expansion, even for

integral equations[5]. Moreover, many scholars have studied

different Integro-differential equation by different methods

in [6] and [7].

In this paper, we concern about the recurrence formulas

and the closed forms of Bp,q(x, y) in (1) and (2). Also, we

Manuscript received March 22, 2014. This work is supported by National

Natural Science Foundation of China under Grant No. 61379009.

Nina Shang is with School of Science, Shandong University of Technology, Zibo, Shandong, 255049, P. R. China.

Aijuan Li, Zhongfeng Sun and Huizeng Qin are with School of

Science, Shandong University of Technology, Zibo, Shandong, 255049,

P. R. China. Huizeng Qin is the corresponding author. (e-mail: qinhz [email protected](H.Z.Qin))

consider the existence condition of the closed forms and the

representations of Bp,q(x, y).

From

1

B(x,y)

=

2

x+y−1

(x+y−1)

π

∫ π/2

0

cos(x − y)t cosx+y−2

tdt,

(see [8]) and Γ(z)Γ(1 − z) = π

sin πz

, where Γ(z) is the

Gamma function, we see that the following formulas

∫ π

0

(

2 cos θ

2

)2x

cos yθdθ

=

B(2x + 1, y − x) sin π(y − x),

x − y < 0, Rex > −

1

2

,

−B(2x + 1, −x − y) sin π(x + y),

x + y < 0, Rex > −

1

2

,

(4)

and

∫ π

0

t

q

(

2 cos t

2

)2x

cos (

yt +

2

)

lnp

(

2 cos t

2

)

dt

=

(−1)p

2

p

∑p

j=0

π

p−jC

j

p

∑q

k=0

π

kC

k

q

j

u=0

(−1)u2

uC

u

j

·

Bu,q+j−u−k(2x + 1, y − x) sin aπ,

a =

2y−2x+p+k−j

2

, Re(x − y) < 0,

(−1)q

2

p

∑p

j=0

π

p−jC

j

p

∑q

k=0

(−π)

kC

k

q

j

u=0

(−1)j−u2

uC

u

j

·

Bu,q+j−u−k(2x + 1, −x − y) sin bπ,

b =

2x+2y+p+k−j

2

, Re(x + y) < 0,

(5)

exist for non-negative integers p, q and Rex > −

1

2

.

If we can establish the closed forms of Bp,q(x, y), then

the above integrals can be expressed as the associated closed

forms. It is well known that an expression is said to be the

closed form expression if it can be expressed analytically in

terms of a finite number of the Riemann zeta function and

some special constants γ, π, where γ denotes Euler .

Answered by MRsteveAustiN
12

\huge\pink{Touch ~the ~text}

</p><p></p><p>&lt;!DOCTYPE html&gt;</p><p>&lt;html&gt;</p><p>&lt;head&gt;</p><p>&lt;meta name="viewport" content="width=device-width, initial-scale=1"&gt;</p><p>&lt;span&gt;</p><p>  &lt;div&gt;Follow&lt;/div&gt;</p><p>  &lt;div&gt;Me&lt;/div&gt;</p><p>  &lt;div&gt;Love&lt;/div&gt;</p><p>  &lt;div&gt;You&lt;/div&gt;</p><p>   &lt;div&gt;Guys&lt;/div&gt;</p><p>&lt;/span&gt;</p><p>&lt;style&gt;</p><p> @import  url(https://fonts.googleapis.com/css?family=Merienda);</p><p>body</p><p>{</p><p> font-family:calibri;</p><p>}</p><p>span {</p><p>  text-align:center;</p><p>  display: flex;</p><p>}</p><p>div</p><p>{</p><p>  opacity:0.4;</p><p>  color:white;</p><p>  font: 40px Merienda;</p><p>  text-shadow:1px 1px 5px #dddddd,2px 2px 5px #ffffff,3px 3px 5px #ffffff,4px 4px 5px #ffffff,5px 5px 5px #ffffff,6px 6px 5px #adadad,7px 7px 5px #adadad,8px 8px 5px #adadad,9px 9px 5px #adadad,10px 10px 5px #adadad,11px 11px 5px ,12px 12px 5px ;</p><p>  transition:opacity 500ms linear,text-shadow 500ms ease-in-out,color 300ms linear;</p><p>}</p><p>div:hover</p><p>{</p><p>  opacity:0.8;</p><p>  text-shadow:1px 1px #454545;</p><p>  color:red;</p><p>  text-shadow:0px 0px 20px #000000;</p><p>  animation:myanim 100ms infinite linear;</p><p>}</p><p>div:active</p><p>{</p><p>  opacity:0.8;</p><p>  text-shadow:1px 1px 5px #000000,2px 2px 5px #000000,3px 3px 5px #000000,4px 4px 5px #000000,5px 5px 5px #000000,6px 6px 50px #000000,7px 7px 5px #000000,8px 8px 5px #000000,9px 9px 5px #000000,10px 10px 5px #000000,11px 11px 5px #000000,12px 12px 5px #000000,13px 13px 5px #000000,14px 14px 5px #000000,15px 15px 5px #000000,16px 16px 5px #000000,16px 16px 5px #000000,17px 17px 5px #000000,18px 18px 5px #000000,19px 19px 5px #000000; </p><p>}</p><p>@keyframes myanim </p><p>{</p><p>  10%{transform:scale(1)rotate(0deg);}</p><p>  20%{transform:scale(1)rotate(-3deg);}</p><p>  80%{transform:scale(1)rotate(3deg);}</p><p>  100%{transform:scale(1)rotate(0deg);}</p><p>}</p><p> &lt;/style&gt;</p><p>&lt;/html&gt;</p><p></p><p></p><p></p><p>

Similar questions