prove the "Pythagoras Theorem"
Answers
Answer:
Pythagoras theorem states that “ In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides”. The sides of the right-angled triangle are called base, perpendicular and hypotenuse . Proof: ... ∠BAD = ∠BAC i.e. ∠A is common in both triangles.
Answer:
Proof:
Proof:We know, △ADB ~ △ABC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABAC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × AC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = AC
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2Hence, the Pythagorean theorem is proved.
Proof:We know, △ADB ~ △ABCTherefore, ADAB=ABACOr, AB2 = AD × AC ……………………………..……..(1)Also, △BDC ~△ABCTherefore, CDBC=BCAC (corresponding sides of similar triangles)Or, BC2= CD × AC ……………………………………..(2)Adding the equations (1) and (2) we get,AB2 + BC2 = AD × AC + CD × ACAB2 + BC2 = AC (AD + CD)Since, AD + CD = ACTherefore, AC2 = AB2 + BC2Hence, the Pythagorean theorem is proved.Note: Pythagorean theorem is only applicable to Right-Angled triangle.