Math, asked by nitushailesh14, 7 months ago

Prove the Pythagorus Theorem, ( In a right angled triangle, the square of the hypotenuse is equal to the sum of the square of remaining two sides. (prove with help of a diagram)​

Answers

Answered by omkargorade2005
4

Answer:

Given: A right-angled triangle ABC, right-angled at B.

To Prove- AC2 = AB2 + BC2

Construction: Draw a perpendicular BD meeting AC at D.

Pythagoras theorem Proof

Proof:

We know, △ADB ~ △ABC

Therefore, ADAB=ABAC (corresponding sides of similar triangles)

Or, AB2 = AD × AC ……………………………..……..(1)

Also, △BDC ~△ABC

Therefore, CDBC=BCAC (corresponding sides of similar triangles)

Or, BC2= CD × AC ……………………………………..(2)

Adding the equations (1) and (2) we get,

AB2 + BC2 = AD × AC + CD × AC

AB2 + BC2 = AC (AD + CD)

Since, AD + CD = AC

Therefore, AC2 = AB2 + BC2

Hence, the Pythagorean theorem is proved.

Note: Pythagorean theorem is only applicable to Right-Angled triangle.

Step-by-step explanation:

Similar questions