prove the que above
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
sinθ - cosθ + 1 / sinθ + cosθ - 1
//Divide by Cosθ both numerator and denominator
[sinθ - cosθ + 1/cosθ]/[sinθ + cosθ - 1/cosθ]
= [sinθ/cosθ - cosθ/cosθ + 1/cosθ] / [sinθ/cosθ + cosθ/cosθ - 1/cosθ]
= tanθ - 1 + secθ / tanθ +1 - secθ
= tanθ + secθ - 1/ tanθ - secθ + 1
= tanθ + secθ - (sec²θ - tan²θ) / tanθ - secθ + 1
= (tanθ + secθ) - (secθ + tanθ)(secθ - tanθ) / tanθ - secθ + 1
= (tanθ + secθ) [1 - secθ+tanθ] / tanθ - secθ + 1
= tanθ + secθ
= sinθ/cosθ + 1/ cosθ
= 1+sinθ/cosθ
=R.H.S
Similar questions