Math, asked by hitakshi91, 1 year ago

prove the que above​

Attachments:

Answers

Answered by spiderman2019
1

Answer:

Step-by-step explanation:

sinθ - cosθ + 1 / sinθ + cosθ - 1

//Divide by Cosθ both numerator and denominator

[sinθ - cosθ + 1/cosθ]/[sinθ + cosθ - 1/cosθ]

= [sinθ/cosθ - cosθ/cosθ + 1/cosθ] /  [sinθ/cosθ + cosθ/cosθ - 1/cosθ]

= tanθ - 1  + secθ / tanθ +1 - secθ

= tanθ  + secθ - 1/  tanθ - secθ + 1

=  tanθ  + secθ - (sec²θ - tan²θ) / tanθ - secθ + 1

= (tanθ  + secθ) - (secθ  + tanθ)(secθ  - tanθ) / tanθ - secθ + 1

= (tanθ  + secθ) [1 - secθ+tanθ] /  tanθ - secθ + 1

=  tanθ  + secθ

= sinθ/cosθ  + 1/ cosθ

= 1+sinθ/cosθ

=R.H.S

Similar questions