Math, asked by shreya1081, 1 day ago

prove the question....answer correctly​

Attachments:

Answers

Answered by indialover44
0

Answer:

Step-by-step explanation:

Consider the LHS.

=(\csc\theta-\sin \theta)(\sec \theta - \cos \theta)\\=(\frac{1}{\sin\theta}-\sin \theta)(\frac{1}{\cos\theta} - \cos \theta)\\=(\frac{1-\sin^2\theta}{\sin\theta})(\frac{1- \cos^2 \theta}{\cos\theta})\\=(\frac{\cos^2\theta}{\sin\theta})(\frac{\sin^2 \theta}{\cos\theta})\\=\cos\theta\sin\theta

Now Consider the RHS

=\dfrac{1}{\tan \theta + \cot\theta}\\=\dfrac{1}{\frac{\sin\theta}{\cos\theta} +\frac{\cos\theta}{\sin\theta}}\\\\=\dfrac{\cos\theta\sin\theta}{{\sin^2\theta}+{\cos^2\theta}}\\\\=\cos\theta\sin\theta

LHS=RHS

Hence, proved

Answered by parmeetsingh68868
0

182782. msdmsksl. kkls

Attachments:
Similar questions