Physics, asked by pari0812, 9 months ago

Prove the relation τ = Iα for a rigid body rotating about a fixed axis?​

Answers

Answered by ERB
4

Explanation:

If a point rotate around a fixed axis with a distance r and the force applied on the point is F, then

 \vec{\tau} = \vec{r} \times \vec{F}

we should keep in mind , a body is combination of a number of points.

Let, the body is a combination of m_1, m_2, m_3,............................,m_n  points.

the distances from fixed axis are r_1, r_2, r_3, ................................., r_n respectively.

Now,  F_1 = m_1 \times linear\ acceleration

               =m_1 \times angular\ acceleration \times r_1

               =m_1 \times \frac{d\omega}{dt}  \times r_1

Next, \tau = \sum\limits_{x=1}^n r_x \times F_x = \sum\limits_{x=1}^n r_x \times m_x \times \frac{d\omega}{dt} \times r_x= \sum\limits_{x=1}^n m_x\times(r_x)^2  \times \frac{d\omega}{dt}

here, m_x \times r_x^2 =moment \ of \ inertia= I_x

So, \tau = \sum\limits_{x=1}^n I_x  \times \frac{d\omega}{dt} = \frac{d\omega}{dt}(I_1+I_2+I_3+ ..............................I_n) = \frac{d\omega}{dt}\times I = \alpha \times I = I\alpha

The relation τ = Iα for a rigid body rotating around a fixed axis is proved.

Similar questions