Prove the relation rC(n r)=nC(n-1 r-1)
Answers
C(n,r)=C(n−1,r−1)+C(n−1,r)
Step-by-step explanation:
Correct Question is
C(n,r)=C(n−1,r−1)+C(n−1,r)
replacing r with a
ⁿCₐ = ⁿ⁻¹Cₐ₋₁ + ⁿ⁻¹Cₐ
RHS = ⁿ⁻¹Cₐ₋₁ + ⁿ⁻¹Cₐ
= (n-1)!/(a - 1)!(n-1 -a + 1)! + (n-1)!/a!(n-1 - a)!
= (n-1)!/(a - 1)!(n -a)! + (n-1)!/a!(n-1 - a)!
= (n-1)!/(a - 1)!(n -a)(n -a-1)! + (n-1)!/a(a - 1)!(n-a- 1)!
= ((n - 1)!/(a - 1)!(n-a- 1)!) ( 1/(n -a) + 1/a)
= ((n - 1)!/(a - 1)!(n-a- 1)!) (( a + n - a)/(a)(n-a))
= ((n - 1)!/(a - 1)!(n-a- 1)!) (n/(a)(n-a))
= (n(n - 1)! / a(a-1)! (n-a)(n-a- 1)!
= n!/a!(n-a)!
= ⁿCₐ
= LHS
QED
proved
Hence ⁿCₐ = ⁿ⁻¹Cₐ₋₁ + ⁿ⁻¹Cₐ
C(n,r)=C(n−1,r−1)+C(n−1,r)
Learn more:
can someone derive a=b from nCa=nCb or a+b=n - Brainly.in
https://brainly.in/question/13311736
If n is even and the value of nCr, is maximum, then r= - Brainly.in
https://brainly.in/question/13846188
if nPr = 6720 and nCr=56 find n and r - Brainly.in
https://brainly.in/question/13753160