Physics, asked by omkarrasal, 6 months ago

Prove the relation, v = w × r, where symbols have their usual meanings​

Answers

Answered by Anonymous
51

Correct Question:

In uniform circular motion, prove the relation \large\rm { \vec{v} = \vec{ \omega} \times \vec{r}} where symbols have their usual meanings.

Answer:

Consider a particle revolving in the anticlockwise sense along the circumference of a circle of radius r with center O

\large\rm { \vec{v} =} Linear velocity of particle

\large\rm { \vec{ \omega} = } angular velocity of particle

\large\rm { \vec{r}=} radius vector of particle

In the vector from, the linear displacement is

\large\rm { \vec { \delta} = \vec{ \delta \theta} \times \vec{r}}

dividing both sides by \large\rm { \delta t} we get,

\large\rm { \frac{ \vec{ \delta s}}{ \vec{ \delta t}} = \frac{ \vec{ \delta \theta}}{ \vec{ \delta t}} \times \vec{r}}

\rm { \displaystyle\lim_{ \delta t \to 0} \frac{ \vec{ \delta s}}{ \vec{ \delta t}} = \displaystyle\lim_{ \delta t \to 0} \frac{ \vec{ \delta \theta}}{ \vec{ \delta t}} \times \vec{r}}

\large\rm { \therefore \frac{ \vec{ \delta s}}{ \vec{ \delta t}} = \frac{ \vec{ \delta \theta}}{ \vec{ \delta t}} \times \vec{r}}

we know that \large\rm {  \frac{ \vec{ \delta s}}{ \vec{ \delta t}} = \vec{v}}

and \large\rm { \frac{ \vec{ \delta \theta}}{ \vec{ \delta t}} = \omega}

\large\boxed{\rm{ \therefore \vec{v} = \vec{ \omega} \times \vec{r}}}

Similar questions