prove the schrodinger wave equation
Chinmay47:
Hi paras
Answers
Answered by
1
Explanation:
Describing the wave motion of a particle along x axis is given by
psi=Asin2π x/lambda
Differentiating psi w.r.t.x ,we get
dpsi/dx=Acos2 I x/lambda(2π/lambda)
=2πA/lambda.cos2π x/lambda
Again differentiating
d^2psi/dx^2=2πA/lambda(-sin2π x/lambda)2π/lambda
=-4π^2/(lambda)^2(Asin2π x/lambda)
=d^2psi/dx^2+4π^2/lambda^2psi=0
if the electron move along x,y,z axis then
d^2psi/dx^2+d^2psi/dy^2+d^2psi/dz^2+4π^2psi/lambda^2=0
=del^2psi+4π2psi/lambda^2=0
acc debroglie ,lambda =h/mv
1/lambda^2=m^2v^2/h^2
m^2v^2/h^2=-del^2.1/4π^2psi
k.E=-del^2psi h^2/8π^2psi m
so the Schrodinger wave equation is
del^2psi+8π^2m/h^2(E-P.E)psi=0
Similar questions