Math, asked by kotharinikki4109, 1 year ago

Prove the series sinx/1-sin2x/2^3+ sin3x/3^3.. Converges absolutely

Answers

Answered by rani76418910
19

Correct answer is \left | S_{n} \right | \leq \sum_{1}^{\infty}\frac{1}{n^{^{3}}}

Explanation:

\sum S_{n} = \frac{\sin x}{1^{3}} - \frac{\sin 2x}{2^{3}} + \frac{\sin 3x}{3^{3}} -...

\textrm{Absolute term of this series is}

\sum S_{n} = \frac{\begin{vmatrix}\sin x\end{vmatrix}}{1^{3}} + \frac{\begin{vmatrix}\sin 2x\end{vmatrix} }{2^{3}} + \frac{\begin{vmatrix}\sin 3x\end{vmatrix}}{3^{3}} +...

\textrm{As we know that}  1\leq \sin x\leq 1 \Rightarrow \begin{vmatrix}\sin x \end{vmatrix} \leq 1 \forall n \in N

\rightarrow \frac{\left | \sin x \right |}{n^{3}} \leq \frac{1}{n^{3}}

\therefore \sum \left | S_{n} \right |\leq \sum_{1}^{\infty}\frac{1}{n^{^{3}}}

Similar questions