prove the sum of four angles in quadrilateral is 360 degree
Answers
Answer:
this is your Answer hope it helps you
Step-by-step explanation:
Consider a quad quadrilateral ABCD.
Join QS.
To\quad prove:∠A+∠B+∠C+∠D=360º
Proof:Consider triangle ABD,
we have,∠A+∠ABD+∠ADB=180º⟹(1)[Using Angle sum property of Triangle]
Similarly,triangle BCD,we have,∠DBC+∠C+∠BDC=180º⟹(2)[Using Angle sum property of Triangle]
On adding (1) and (2),we get∠A+∠ABD+∠ADB+∠DBC+∠C+∠BDC=180º+180º
∠A+∠B+∠C+∠D=360º
Consider a quadrilateral PQRS
Join QS
To Prove :angle P +angle Q +angle R + angle S =360°
Proof: Consider triangle PQS ,we have,
•angle P +angle PQS + angle PSQ=180°....(1)(ASP OF TRIANGLE)
Similarly, in triangle QRS,we have,
•angle SQR + angle R + angle QSR=180°...(2)(ASP OF TRIANGLE)
By adding (1)&(2),we get,
angle P+angle PQS + angle PSQ + angle SQR + angle R + angle QSR=180°+180°
●angle P + angle PQS + angle SQR +angle R +angle PSQ=360°
●angle P +angle Q + angle R + angle S =360°