Math, asked by hashimkhan57, 1 year ago

Prove the trigonometric sum​

Attachments:

Shraddha02004: is this of 10th class
hashimkhan57: 11 th class

Answers

Answered by Anonymous
2

HEYA \:  \\  \\ GIVEN \:  \: QUESTION \:  \: Is \:  \:  \\  \sqrt{2}  \cos( \frac{\pi}{4}  + x)  =  \cos(x)  -  \sin(x)  \\  \\ rhs \\  \\  \cos(x)  -   \sin( x)  \\ Multiply \:  \: Numerator \:  \: and \ \\  Denominator \:  \: by \:  \sqrt{2}  \: we \: have \\  \\  \ \  \sqrt{2} ( \frac{ \cos(x) }{ \sqrt{2} }  -   \frac{ \sin(x) }{ \sqrt{2} } ) \\  \\  \sqrt{2} ( \cos( \frac{\pi}{4} ) \cos(x)   -  \sin( \frac{\pi}{4} )  \sin(x) ) \\  \\  \sqrt{2} ( \cos( \frac{\pi}{4}  + x)  \:  \: hence \: proved \:  \:  \\  \\ Note \:  \:  \:  \:  \:  \:  \:  \\  \\ 1) \:  \:  \:  \:  \cos( \alpha  -  \beta )  =  \cos( \alpha )  \cos( \beta )  +  \sin( \alpha )  \sin( \beta )  \\  \\ 2) \:  \:  \:  \sin( \frac{\pi}{4} )  =  \cos( \frac{\pi}{4} )  =  \frac{1}{ \sqrt{2} }

Similar questions