Math, asked by kpaplubnbulburima, 1 year ago

Prove the Value 2 = 1
Prove this 2 = 1?

Answers

Answered by toptek
5
Ok, with a smile on our face, lets try to get this going:

Let two numbers be x and y

x.y = x²

Adding x² on both sides, we get:
x² + xy = x² + x²

Adding -2xy on both sides, we get:
x² + xy - 2xy = 2x² - 2xy
          x² - xy = 2 (x² - xy) ----------- (i)

From (i), we get write  x² - xy as 1( x² - xy)

Lets re-right (i) as follows:
1(x² - xy) = 2 (x² - xy)

Cancelling (x² - xy) from both sides we get 1 = 2.

Hence proved.






Answered by GodBrainly
15
\mathfrak{\huge{\underline{Solution:}}}


____________________________________

 \: \: \: \: \: \: \: \: \sf1 = 1 \\ \sf 1 - 1 = 1 {}^{2} - {1}^{2} \: \: \: \: \: \: \: \: \: \{ a {}^{2} - b {}^{2} = (a - b)(a + b) \} \\ \sf1 - 1 =(1 - 1)(1+ 1) \\ \\ \sf Dividing \: (1 - 1) \: on \: both \: side \\ \\ \sf\frac{ \cancel{(1 - 1)}}{ \cancel{(1 - 1)}} = \frac{ \cancel{(1 - 1)}(1 + 1)}{ \cancel{(1 - 1)}} \\ \\ \huge{\boxed{ \sf \blue{1 = 2}}} \\ \\ \sf \large {Hence \: Proved!!!}

____________________________________
Similar questions