Math, asked by rajaarpit8pdx9f5, 1 year ago

prove the value of=>( 1+sintheta - costheta/1+sintheta +costheta) 2 = 1-costheta /1+costheta

Attachments:

Answers

Answered by ajeshrai
64
you can see your answer
Attachments:

rajaarpit8pdx9f5: what about the last step
rajaarpit8pdx9f5: okkk
rajaarpit8pdx9f5: thnx
rajaarpit8pdx9f5: 10
rajaarpit8pdx9f5: what about you
Answered by Courageous
59

Answer to the question,

L.H.S

(1+sinФ-cosФ/1+sinФ+cosФ)²


=(1+sinФ-cosФ)²/(1+sinФ+cosФ)²


=(1+sinФ)²-2(1+sinФ)cosФ+cos²Ф/(1+sinФ)²+2(1+sinФ)cosФ+cos²Ф


=1+2sinФ+sin²Ф-(2+2sinФ)cosФ+cos²Ф/1+ 2sinФ+sin²Ф+(2+2sinФ)cosФ+cos²Ф

=1+2sinФ+sin²Ф+cos²Ф-2cosФ-2sinФcos/1+2sinФ+sin²Ф+cos²Ф+2cosФ+2sinФcosФ


=1+2sinФ+1-2cosФ-2sinФcosФ/1+2sinФ+1+2cosФ+2sinФcosФ


=2+2sinФ-2cosФ-2sinФcosФ/2+2sinФ+2cosФ+2sinФcosФ


=2(1+sinФ)-2cosФ(1+sinФ)/2(1+sinФ)+2cosФ(1+sinФ)


=2(1+sinФ)(1-cosФ)/2(1+sinФ)(1+cosФ)


=1-cosФ/1+cosФ


= R.HS

Similar questions