prove the value of=>( 1+sintheta - costheta/1+sintheta +costheta) 2 = 1-costheta /1+costheta
Attachments:
Answers
Answered by
64
you can see your answer
Attachments:
rajaarpit8pdx9f5:
what about the last step
Answered by
59
Answer to the question,
L.H.S
(1+sinФ-cosФ/1+sinФ+cosФ)²
=(1+sinФ-cosФ)²/(1+sinФ+cosФ)²
=(1+sinФ)²-2(1+sinФ)cosФ+cos²Ф/(1+sinФ)²+2(1+sinФ)cosФ+cos²Ф
=1+2sinФ+sin²Ф-(2+2sinФ)cosФ+cos²Ф/1+ 2sinФ+sin²Ф+(2+2sinФ)cosФ+cos²Ф
=1+2sinФ+sin²Ф+cos²Ф-2cosФ-2sinФcos/1+2sinФ+sin²Ф+cos²Ф+2cosФ+2sinФcosФ
=1+2sinФ+1-2cosФ-2sinФcosФ/1+2sinФ+1+2cosФ+2sinФcosФ
=2+2sinФ-2cosФ-2sinФcosФ/2+2sinФ+2cosФ+2sinФcosФ
=2(1+sinФ)-2cosФ(1+sinФ)/2(1+sinФ)+2cosФ(1+sinФ)
=2(1+sinФ)(1-cosФ)/2(1+sinФ)(1+cosФ)
=1-cosФ/1+cosФ
= R.HS
Similar questions