Prove Theoretically:AU(B-A)=AUB
Answers
Answered by
7
Answer:
We have to prove that : (A-B) U (B-A) = (A∪B) - (A∩B)
Step-by-step explanation:
Proof:
Let, x ∈ (A-B) U (B-A)
⇒ x ∈ (A-B) or x ∈ (B-A)
⇒ x ∈ A But x ∉ B or x ∈ B but x ∉ A,
⇒ x ∈ A or x ∈ B
⇒ x ∈ (A∪B)
⇒ x ∈ (A∪B) - (A∩B)
Since here x represents the arbitrary element of the set (A-B) U (B-A).
Thus, (A-B) U (B-A) = (A∪B) - (A∩B)
Hence, proved.
Similar questions