Math, asked by BigHeart, 2 months ago

Prove This
1/ 2−√3 − 1/ √3−√2 + 1/ √2−1 = 3.​

Answers

Answered by Raj3boy
1

Answer:

Step-by-step explanation:

question says

\frac{1}{2-\sqrt{3} } - \frac{1}{\sqrt{3} - \sqrt{2}  }  + \frac{1}{\sqrt{2} - 1} \\

we can rationalize each of the denominator as

\frac{1}{2-\sqrt{3} } - \frac{1}{\sqrt{3} - \sqrt{2}  }  + \frac{1}{\sqrt{2} - 1} \\\\\frac{1(2+\sqrt{3} )}{2-\sqrt{3}(2+\sqrt{3} ) }  - \frac{1(\sqrt{3} + \sqrt{2}  )}{\sqrt{3} - \sqrt{2}(\sqrt{3} + \sqrt{2}  )  } + \frac{1(\sqrt{2} + 1 )}{\sqrt{2} - 1 (\sqrt{2} + 1)  }  \\

which will give us

\frac{2 + \sqrt{3} }{4-3} - \frac{\sqrt{3} + \sqrt{2} }{3-2} +\frac{\sqrt{2} + 1 }{2-1} \\

(2+\sqrt{3}) - (\sqrt{3}+\sqrt{2}  ) +(\sqrt{2} +1)\\2+\sqrt{3}-\sqrt{3}-\sqrt{2}+\sqrt{2}+1\\2+1\\3

Similar questions