Prove this a + (b + c) = (a +b) + c if
(i) a=8, b=3, c=5
(ii) a=18, b=2, c=3
Answers
Answer:
Step-by-step explanation:
i) LHS= 8+(3+5) (always solve brackets first)
=> 8+8 = 16
RHS= (8+3)+5
=> 11+5 = 16
:. LHS=RHS
----------------------------------------------
ii) LHS= 18+(2+3)
=> 18+5 = 23
RHS= (18+2)+3
=> 20+3=23
:. LHS=RHS
QUESTION: Prove this a + (b + c) = (a +b) + c if
(i) a=8, b=3, c=5
(ii) a=18, b=2, c=3
ANSWER: a + (b + c) = (a +b) + c = Assosiative property
i] a=8, b=3, c=5
so it will be
a + (b + c) = (a +b) + c
8 + (3 + 5) = (8 +3) + 5
First we will solve the LHS= 8 + (3 + 5)
= 8+ 8
=16
Now we will solve RHS = (8 +3) + 5
=11+5
=16
Hence verified LHS=RHS
ii] a=18, b=2, c=3
a + (b + c) = (a +b) + c
18 + (2 + 3) = (18 +2) + 3
First we will solve the LHS= 18 + (2 + 3)
= 18+5
=23
Now we will solve RHS = (18 +2) + 3
20+3
=23
Hence verified LHS=RHS