Math, asked by subhashattri07, 1 month ago

prove this ,,
don't copy from internet please​

Attachments:

Answers

Answered by sandy1816
5

\huge\mathcal\colorbox{lavender}{{\color{b}{ꪗour Answer★࿐}}}

2 {tan}^{ - 1}  \frac{1}{2}  +  {tan}^{ - 1}  \frac{1}{7}  \\  =  {tan}^{ - 1}  \frac{2 \times  \frac{1}{2} }{1 - ( { \frac{1}{2} })^{2} }  +  {tan}^{ - 1}  \frac{1}{7}  \\  =  {tan}^{ - 1}  \frac{1}{ \frac{3}{4} }  +  {tan}^{ - 1}  \frac{1}{7}  \\  =  {tan}^{ - 1}  \frac{4}{3}  +  {tan}^{ - 1}  \frac{1}{7}  \\  =  {tan}^{ - 1}  \frac{ \frac{4}{3} +  \frac{1}{7} }{1 -  \frac{4}{3}  \times  \frac{1}{7} } \\  =  {tan}^{ - 1}  \frac{28 + 3}{21 - 4}  \\  =  {tan}^{ - 1}  \frac{31}{17}

Similar questions