Math, asked by RikTHEEmperor, 10 hours ago

Prove this equation.​

Attachments:

Answers

Answered by NITESH761
1

Step-by-step explanation:

We have,

\rm \dfrac{\sin A}{ \sin (90^{\circ} -A)} + \dfrac{\cos A}{\cos (90^{\circ} -A)}

We know that,

\boxed{ \sin (90^{\circ}- θ)= \cos θ}

\boxed{ \cos (90^{\circ}- θ)= \sin θ}

\rm \dfrac{\sin A}{ \cos A} + \dfrac{\cos A}{\sin A}

\rm \dfrac{\sin ^2 A+ \cos ^2A}{ \cos A \sin A}

We know that,

\boxed{ \rm \sin ^2 θ + \cos ^2 θ =1}

\rm \dfrac{1}{ \cos A \sin A}

\rm \dfrac{1}{ \cos A } · \dfrac{1}{\sin A}

\rm = \sec A \cosec A

\rm \qquad \qquad Henced, proved

Answered by rhidamrajprajapati
1

Answer:

Done... (⌒o⌒)

best of luck for ur board term 1 exam... mate ʕ•ﻌ•ʔ

Attachments:
Similar questions