Prove this equation
Attachments:
Answers
Answered by
20
To prove:
Proof:
RHS =
LSH =
Rationalizing the denominator:
LHS =
RHS =
RHS = LHS
Hence proved.
Identities used:
Anonymous:
under solution
Answered by
7
Solution:-
To Proof:-
[ ( sinA . tanA )/ ( 1- cosA) ] =( 1 + secA )
Proof :-
L.H.S.
[ ( sinA . tanA )/ ( 1- cosA) ]
On Rationalizing. we get,
=) [ ( sinA . tanA )/ ( 1- cosA) ] × [ ( 1 +cosA)/ ( 1 + cosA )]
=) [ ( sinA . tanA ). ( 1 + cosA)/ ( 1- cosA).( 1 + cosA) ]
=)[ ( sinA . tanA ). ( 1 + cosA)/ ( 1² - cosA² ) ]
=) [ ( sinA . tanA ). ( 1 + cosA)/ sin²A ]
=) [ tanA. ( 1 +cosA)/ sinA ]
=) [ sinA/cosA . ( 1 + cosA)/sinA ]
=) [ ( 1 + cosA)/cosA ]
=) [ 1/cosA + cosA/cosA ]
=) [ secA + 1 ]
=) 1 + secA.
Hence Proved!
Identity Used:-
- ( a² - b² ) = ( a + b) ( a - b )
Trigonometric Formulas:-
- ( sin²A + cos²A ) = 1
- ( sec²A - tan²A ) = 1
- ( cosec²A - cot²A ) = 1
Similar questions