Math, asked by SanjeeviniSingh, 1 year ago

Prove this equation ​

Attachments:

Answers

Answered by TheCommando
20

To prove:

 \dfrac{sin\theta\; tan\theta}{1 - cos\theta} = 1 + sec\theta

Proof:

RHS =  1 + sec\theta

LSH =  \dfrac{sin\theta\; tan\theta}{1 - cos\theta}

Rationalizing the denominator:

LHS =  \dfrac{sin\theta\; tan\theta}{1 - cos\theta} \times \dfrac{1+cos\theta}{1+cos\theta}

 = \dfrac {sin\theta\; tan\theta(1+cos\theta)}{{sin}^{2}\theta}

=\dfrac {tan\theta (1+cos\theta)}{sin\theta}

=\dfrac {sin\theta(1+cos\theta)}{cos\theta\;sin\theta}

=\dfrac{1+cos\theta}{cos\theta}

RHS =  1 + sec\theta

=1+ \dfrac{1}{cos\theta}

=\dfrac{cos\theta + 1}{cos\theta}

RHS = LHS

Hence proved.

Identities used:

 {a}^{2} - {b}^{2} = (a + b)(a - b)

{sin}^{2}\theta + {cos}^{2}\theta = 1

tan\theta = \dfrac{sin\theta}{cos\theta}

sec\theta = \dfrac{1}{cos\theta}


Anonymous: under solution
jkadsfhj: hmm good
Answered by UltimateMasTerMind
7

Solution:-

To Proof:-

[ ( sinA . tanA )/ ( 1- cosA) ] =( 1 + secA )

Proof :-

L.H.S.

[ ( sinA . tanA )/ ( 1- cosA) ]

On Rationalizing. we get,

=) [ ( sinA . tanA )/ ( 1- cosA) ] × [ ( 1 +cosA)/ ( 1 + cosA )]

=) [ ( sinA . tanA ). ( 1 + cosA)/ ( 1- cosA).( 1 + cosA) ]

=)[ ( sinA . tanA ). ( 1 + cosA)/ ( 1² - cosA² ) ]

=) [ ( sinA . tanA ). ( 1 + cosA)/ sin²A ]

=) [ tanA. ( 1 +cosA)/ sinA ]

=) [ sinA/cosA . ( 1 + cosA)/sinA ]

=) [ ( 1 + cosA)/cosA ]

=) [ 1/cosA + cosA/cosA ]

=) [ secA + 1 ]

=) 1 + secA.

Hence Proved!

Identity Used:-

  • ( a² - b² ) = ( a + b) ( a - b )

Trigonometric Formulas:-

  • ( sin²A + cos²A ) = 1
  • ( sec²A - tan²A ) = 1
  • ( cosec²A - cot²A ) = 1
Similar questions