Prove this equation
Answers
sin^2 A-sin^ B. + cos^2A-cos^B
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------ (cos A+cos B) (sin A+sin B)
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------ (cos A+cos B) (sin A+sin B) sin^2 A +cos^A -(sin^B +cos^B)
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------ (cos A+cos B) (sin A+sin B) sin^2 A +cos^A -(sin^B +cos^B)= -----------------------------------------------------
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------ (cos A+cos B) (sin A+sin B) sin^2 A +cos^A -(sin^B +cos^B)= ----------------------------------------------------- (cos A+cos B) (sin A+sin B)
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------ (cos A+cos B) (sin A+sin B) sin^2 A +cos^A -(sin^B +cos^B)= ----------------------------------------------------- (cos A+cos B) (sin A+sin B) 1-1
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------ (cos A+cos B) (sin A+sin B) sin^2 A +cos^A -(sin^B +cos^B)= ----------------------------------------------------- (cos A+cos B) (sin A+sin B) 1-1=-------------------------------------------------
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------ (cos A+cos B) (sin A+sin B) sin^2 A +cos^A -(sin^B +cos^B)= ----------------------------------------------------- (cos A+cos B) (sin A+sin B) 1-1=------------------------------------------------- (cos A+cos B) (sin A+sin B)
sin^2 A-sin^ B. + cos^2A-cos^B------------------------------------------------------ (cos A+cos B) (sin A+sin B) sin^2 A +cos^A -(sin^B +cos^B)= ----------------------------------------------------- (cos A+cos B) (sin A+sin B) 1-1=------------------------------------------------- (cos A+cos B) (sin A+sin B) =0 (proved)
To prove:
Proof:
By taking LCM
= 0 = RHS
Identity used:
Hence, proved.