prove this equation guys
50 points question
brainly would be marked for the right answer
spamming will be the reported
Answers
Hope it helps you
Don't forget to mark me as a brainlist
contact me on this number
+919864162861
Answer:
We will prove this by induction.
S_n={}^rC_r+{}^{r+1}C_r+{}^{r+2}C_r+ .... +{}^{n-2}C_r+{}^{n-1}C_r+{}^nC_r,\ \ r<=n\\\\.\ \ \ =\Sigma_{k=0}^{n-r}\ {}^{r+k}C_r={}^{n+1}C_{r+1},\ \ or,\ \ {}^{n+1}C_{n-r},\ r<=n\\We\ want\ to\ prove\ this.\\\\S_r={}^rC_r=1.\ \ RHS={}^{r+1}C_{r+1}=1,\ \ as\ n=r\\\\S_{r+1}={}^rC_r+{}^{r+1}C_r=1+r+1=r+2\\RHS\ with\ n=r+1={}^{r+1+1}C_{r+1}=r+2.\\\\Let\ S_p={}^{p+1}C_{r+1}\\\\S_{p+1}={}^{p+1}C_{r+1}+{}^{p+1}C_{r}=\frac{(p+1)!}{(r+1)!(p-r)!}+\frac{(p+1)!}{r!(p+1-r)!}\\
.\ \ \ =\frac{(p+1)!}{r!(p-r)!}* [\frac{1}{r+1}+\frac{1}{p+1-r} ] =\frac{(p+1)!}{r!(p-r)!}* \frac{p+2}{(r+1)(p+1-r)}\\\\.\ \ \ =\frac{(p+2)!}{(r+1)!(p+1-r)!}={}^{p+2}C_{r+1}=R.H.S.\\\\Hence,\ proved.\\
Step-by-step explanation: