Math, asked by 1805040444b, 3 months ago

Prove this identity between two infinite sums (with x ∈ R and n! stands for factorial): X∞ n=0 x n n! !2 = X∞ n=0 (2x) n n!

Answers

Answered by pulakmath007
40

SOLUTION

TO PROVE

The identity

 \displaystyle \sf{ {  \bigg(\sum\limits_{n = 0}^{ \infty}  \:  \frac{ {x}^{n} }{n!} \bigg)}^{2} = \sum\limits_{n = 0}^{ \infty}  \frac{ {(2x)}^{n} }{n!} }

CONCEPT TO BE IMPLEMENTED

We are aware of the expansion of  \sf{ {e}^{x} \: } :

 \displaystyle \sf{ {e}^{x}  = 1 + \frac{ {x}^{} }{1! }   +  \frac{ {x}^{2} }{2! }  +\frac{ {x}^{3} }{3! } + ... +  \frac{ {x}^{n} }{n! }  + .....     }

 =  \displaystyle \sf{  \sum\limits_{n = 0}^{ \infty}  \frac{ {x}^{n} }{n!} }

PROOF

LHS

 =  \displaystyle \sf{ {  \bigg(\sum\limits_{n = 0}^{ \infty}  \:  \frac{ {x}^{n} }{n!} \bigg)}^{2}}

 =  \displaystyle \sf{ \bigg( {1 + \frac{ {x}^{} }{1! }   +  \frac{ {x}^{2} }{2! }  +\frac{ {x}^{3} }{3! } + ... +  \frac{ {x}^{n} }{n! }  + .....\bigg)}^{2}  }

 \sf{ =  { ({e}^{x} )}^{2}  \: }

 =  \displaystyle \sf{ {e}^{2x}  }

 \displaystyle \sf{ = 1 + \frac{ {2x}^{} }{1! }   +  \frac{ {(2x)}^{2} }{2! }  +\frac{ {(2x)}^{3} }{3! } + ... +  \frac{ {(2x)}^{n} }{n! }  + .....     }

 \displaystyle \sf{= \sum\limits_{n = 0}^{ \infty}  \frac{ {(2x)}^{n} }{n!} }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

The highest exponent of 24 in 20! is

https://brainly.in/question/21368441

Similar questions