Math, asked by vibhanshu8441, 8 months ago

Prove this identity in trigonometry ​

Attachments:

Answers

Answered by Anonymous
13

\green{\bold{\underline{ ☆ UPSC-ASPIRANT ☆} }}

\red{\bold{\underline{\underline{QUESTION:-}}}}

 {(sina + seca})^{2}  + ( {cosa + coseca)}^{2}   =  {(1 + secacoseca)}^{2}

\huge\bigstar\huge\tt\underline\red{ᴀɴsᴡᴇʀ }\bigstar

Here we take L.H.S to prove this question.

see ⇑⇑⇑in the picture above attach for complete solution step by step:-

Hope it helps you..!!!

_________________

Thankyou:)

THE BRAINLIEST ANSWER

Attachments:
Answered by hukam0685
2

Step-by-step explanation:

Given that:

( {sinA + secA)}^{2}  + ( {cosA + cosecA)}^{2}  = ( {1 + secA \: cosecA)}^{2}  \\  \\

Solution:

To prove this trigonometric expression

It is easy to take LHS

( {sinA + secA)}^{2}  + ( {cosA + cosecA)}^{2} \\  \\

Open square using Algebraic identity

( {a + b)}^{2}  =  {a}^{2}  +  {b}^{2} + 2ab  \\  \\

 =  {sin}^{2} A +  {sec}^{2} A + 2sinA \: sec \: A +  {cos}^{2} A +  {cosec}^{2} A + 2cosA \: cosec \: A \\  \\

take terms of sin A and cos A together

=  {sin}^{2} A +{cos}^{2} A +  {sec}^{2} A + 2sinA \: sec \: A   +  {cosec}^{2} A + 2cosA \: cosec \: A \\   \\  = 1 +  {sec}^{2} A  +  {cosec}^{2} A +  2sinA \: sec \: A  + 2cosA \: cosec \: A \\   \\ \because \: {sin}^{2}  \theta +{cos}^{2} \theta = 1 \\  \\

Now we know that

sec \: A =  \frac{1}{cos \: A}  \\  \\ cosecA =  \frac{1}{sinA}  \\  \\

1 +   \frac{1}{{cos}^{2} A } +  \frac{1}{{sin}^{2} A} +   \frac{2sinA}{cos \: A}   + \frac{2cosA}{sin \: A} \\   \\

take LCM of first two trigonometry terms and last two terms

1 +   \frac{ {sin}^{2}A +  {cos}^{2}A  }{{sin}^{2} A \:  {cos}^{2}A } +   2\frac{ {sin}^{2}A +  {cos}^{2}A }{sin A\:cos A} \\   \\ = 1 +  \frac{1}{{sin}^{2} A \:  {cos}^{2}A}  +  \frac{2}{sinA \: cos \: A}  \\  \\  = 1 +  {sec}^{2}A \:  {cosec}^{2}A+ 2secA \: cosec \: A \\  \\   = ( {1 + secA \: cosecA)}^{2}   \\  \\  =R.H.S. \\  \\

Hence proved.

Alternative method:

apply these Identity before open square

sec \: A =  \frac{1}{cos \: A}  \\  \\ cosecA =  \frac{1}{sinA}  \\  \\

( {sinA + secA)}^{2}  + ( {cosA + cosecA)}^{2} \\  \\=({sinA + \frac{1}{c osA}})^{2}  + ( {cosA + \frac{1}{sinA}})^{2} \\  \\

sin^2A+\frac{1}{cos^2A}+\frac{2sinA}{cosA}+cos^2A+\frac{1}{sin^2A}+\frac{2cosA}{sinA}\\\\

take terms of sinA and cos A together

apply identity

 \because \: {sin}^{2}  \theta +{cos}^{2} \theta = 1 \\  \\

sin^2A+cos^2A+\frac{1}{cos^2A}+\frac{1}{sin^2A}+\frac{2sinA}{cosA}+\frac{2cosA}{sinA}\\\\= 1+\frac{1}{cos^2A}+\frac{1}{sin^2A}+\frac{2sinA}{cosA}+\frac{2cosA}{sinA}\\\\

Take LCM of first two trigonometric terms and last two terms

1 +   \frac{ {sin}^{2}A +  {cos}^{2}A  }{{sin}^{2} A \:  {cos}^{2}A } +   2\frac{ {sin}^{2}A +  {cos}^{2}A }{sin A\:cos A} \\   \\ = 1 +  \frac{1}{{sin}^{2} A \:  {cos}^{2}A}  +  \frac{2}{sinA \: cos \: A}  \\  \\  = 1 +  {sec}^{2}A \:  {cosec}^{2}A+ 2secA \: cosec \: A \\  \\   = ( {1 + secA \: cosecA)}^{2}   \\  \\  =R.H.S. \\  \\

Hence proved.

Hope it helps you

Similar questions