Math, asked by TheRisenPhoenix, 9 months ago

Prove this identity: \frac{1+cos\alpha }{sin\alpha ^{2} } = \frac{1}{1-cos\alpha } I had asked this question before but it had a typo so can you please solve

Answers

Answered by Cosmique
6

Question

\rule{200}3

Prove this identity :

\sf{\frac{1+cos\alpha}{sin^2\alpha}=\frac{1}{1-cos\alpha}}

\rule{200}3

Solution

\rule{200}3

Taking LHS

:\implies\bf{LHS}=\sf{\frac{1+cos\alpha}{sin^2\alpha}}

Multiplying by \sf{\frac{1-cos\alpha}{1-cos\alpha}}

:\implies\bf{LHS}=\sf{\frac{1+cos\alpha}{sin^2\alpha}\times\frac{1-cos\alpha}{1-cos\alpha}}

Using identity (a+b)(a-b)=a²-b²

:\implies\bf{LHS}=\sf{\frac{(1)^2-(cos\alpha)^2}{sin^2\alpha(1-cos\alpha)}}\\\\:\implies\bf{LHS}=\sf{\frac{1-cos^2\alpha}{sin^2\alpha(1-cos\alpha)}}

Using trigonometric identity

1 - cos²A = sin²A

:\implies\sf{LHS=\frac{sin^2\alpha}{sin^2\alpha(1-cos\alpha)}}\\\\:\implies\sf{LHS=\frac{1}{1-cos\alpha}=RHS}

Hence Proved .

\rule{200}3

More trigonometric identities  

→ sin²A + cos²A = 1

→ 1 + tan²A = sec²A

→ 1 + cot²A = cosec²A

→ sin(90-A) = cos A

→ cos(90-A) = sin A

→ sec(90-A) = cosec A

→ cosec(90-A) = sec A

→ tan(90-A) = cot A

→ cot(90-A) = tan A

\rule{200}3


RvChaudharY50: Excellent. ❤️
Answered by Ridvisha
28
{ \huge{ \underline{ \underline{ \red{ \mathfrak{Question:-}}}}}}



▪ Prove the identity




{ \bold{ \huge{ \blue{ \frac{1 + \cos( \alpha ) }{ { \sin( \alpha ) }^{2} } = \frac{1}{1 - \cos( \alpha ) } }}}}




{ \huge{ \underline{ \underline{ \red{ \mathfrak{Solution:-}}}}}}




{\huge{ \bold{ \frac{1 + \cos( \alpha ) }{ { \sin( \alpha ) }^{2} } = \frac{1}{1 - \cos( \alpha ) }} }}



▪ solving the L.H.S......



{\huge { \bold{ = \frac{1 + \cos( \alpha ) }{ { \sin( \alpha ) }^{2} }} }}



▪ using the trigonometric identity.....



{ \boxed{ \red{ \bold{ \: \: { \sin( \alpha ) }^{2} = 1 - { \cos( \alpha ) }^{2} \: \: }}}}



{ \huge {\bold{ = \frac{1 + \cos( \alpha ) }{1 - { \cos( \alpha ) }^{2} }} }}




▪ we know that.....




{ \boxed{ \bold{ \red{ \: {a}^{2} - {b}^{2} = (a - b)(a + b) \: }}}}



▪ using this algebraic identity in the denominator.....



{ \huge {\bold{ = \frac{(1 + \cos( \alpha ) )}{(1 - \cos( \alpha )) (1 + \cos( \alpha ) )} }}}



{\huge{ \bold{ = \frac{1}{1 - \cos( \alpha ) }} }}



thus,



{ \boxed{ \bold{ \blue{ \: L.H.S. = R.H.S. \: \: }}}}



hence, proved....



{ \boxed{ \bold{ \red{ \frac{1 + \cos( \alpha ) }{ { \sin( \alpha ) }^{2} } = \frac{1}{1 - \cos( \alpha ) } }}}}






.

RvChaudharY50: Awesome. ❤️
Similar questions