Math, asked by rajsinghrrj55, 10 months ago

prove this if you are a master in this​

Attachments:

Answers

Answered by Anonymous
1

\huge\underline\mathfrak\red{Question:-}

\tt{To\: prove:-} \tt \frac{ \sin θ-  \cos θ+ 1}{ \sin θ +  \cos θ- 1 }  =  \frac{1}{ \secθ -  \tan θ}

\huge\underline\mathfrak\green{Answer:-}

In this problem we will use suitable formulas like,

 { \tan}^{2}θ -  { \sec }^{2} θ=  - 1

L.H.S

\rightarrow\frac{ \sin θ  -  \cosθ+ 1 }{ \sin θ  +  \cosθ  - 1 }

[Dividing by cosθ on both numerator and denominator]

\rightarrow\tt  \frac{ \frac{ \sin θ  -  \cos θ + 1 }{ \cos θ } }{ \frac{ \sin θ+  \cosθ- 1}{ \cos θ } }

 \rightarrow\tt \frac{ \tan θ    - 1 +  \sec θ  }{ \tan  θ + 1 -  \sec  θ  }

\rightarrow\tt  \frac{( \tan  θ +  \sec θ  )   - 1}{( \tan θ  -   \sec  θ + 1 }

\rightarrow\tt \frac  {( {\tan}^{2}θ +  \secθ- 1)( \tan θ   -  \sec θ   ) }{[( \tan  θ  -  \sec θ  ) +1]( \tanθ  -  \sec θ )}

\rightarrow\tt  \frac{ ({ \tan }^{2} θ  -  { \sec }^{2} θ ) - ( \tan θ  -  \sec θ ) }{( \tan θ-  \sec θ + 1)( \tan θ  -  \sec θ ) }

\rightarrow\tt  \frac{ - 1 -  \tan θ +  \sec θ }{( \tan θ  -  \sec  θ + 1)( \tan θ-  \sec  θ )}

 \rightarrow\tt \frac{ - 1 - ( \tan θ -  \sec θ ) }{( \tan θ -  \sec θ + 1)( \tan θ-  \secθ ) }

 \rightarrow\tt \frac{ - 1}{ \tan θ   -  \sec  θ }

 \rightarrow\tt \frac{  1}{ \sec  θ -  \tan  θ}

= R.H.S

Answered by Anonymous
0

Answer:

I hope answer is helpful to us

Attachments:
Similar questions