Physics, asked by BrainlyMentor, 1 year ago

Prove this logarithmic equation .




If log18 ( base 12 ) = alpha .
log54 ( base 24 ) = beta .

Then prove that
alpha × beta + 5(alpha - beta ) = 1





Answers

Answered by rohit710
44
Heya.......!!!!


_________________________


given \: in \: the \: question \:   \\  =  >  log_{12}(18)  =  \alpha  \:  \: and \:  log_{24}(54)  =  \beta  \\  \\  =  >  \:  log_{12}(18)  =  \alpha  =  \frac{ log(18) }{  log(12)  }  \\  =  >  \frac{ log(3  {}^{2} \times 2 ) }{ log(3 \times 2 {}^{2} ) }  \\  =  >  \frac{2 log(3) +  log(2)  }{ log(3) + 2 log(2)  }  \\  \\  \beta  =  \frac{ log(54) }{ log 24}   \\  =  >  \frac{ log(3 {}^{3} \times 2 ) }{ log(3 \times 2 {}^{3} ) }  \\  =  >  \frac{ 3log(3)  +  \:  log(2) }{ log(3 )  +  \: 3 log(2) }  \\  \\ now \: let \: x \:  =  log(2) \:  \: and \: y \:  =  log(3) \\ then \\  \\  \alpha  =  \frac{x + 2y}{2x + y} \\  \beta  =  \frac{x + 3y}{3x + y}  \\  \\ we \: have \: to \: prove \: that \:  \:  \alpha  \beta  \:  + 5( \alpha  -  \beta ) = 1 \\  \\ putting \: the \: vaues \: we \: get \\  \\  =  >  \frac{x + 2y}{2x + y}  \times  \frac{x + 3y}{3x + y}  \:  + 5( \frac{(x + 2y)(3x + y) - (x + 3y)(2x + y)}{(2x + y)(3x + y)}  \\  \\ its \: long \: calcultion....... \\  \\  =  >  \frac{(x {}^{2} \times 5xy + 6y {}^{2}) + 5(x {}^{2}    - y {}^{2} )}{6x {}^{2}  + 5xy + y {}^{2} }  \\ that \: is \: equal \: to \:  \\  =  >  \frac{6x {}^{2}  + 5xy + y {}^{2} }{6x {}^{2} + 5xy + y {}^{2}  }  = 1 \\  \\  \\ hence \: proved \\  \\


--------------------------------------------------------

Hope It helps You ☺☺

Anonymous: G R E A T
rohit710: T h a n k s : ) ^ _ ^
rohit710: Thanks sir :p
raminder1: hiiiii
raminder1: rohit
raminder1: r u here
raminder1: plzzzplzzzreply
Similar questions