Math, asked by trinabhaumik09, 3 months ago

Prove this particular question.​

Attachments:

Answers

Answered by Anonymous
8

Given :

 \\ :\normalsize\boxed{\bf\dfrac{1}{1+\tan^2A}+\dfrac{1}{1+\cot^2A}=1}

To Find :

Prove.

Solution :

Analysis :

Here first we have to solve the LHS using the required identity. Then after getting the LHS we can prove it.

Explanation :

 \\ \normalsize\sf\dfrac{1}{1+\tan^2A}+\dfrac{1}{1+\cot^2A}=1

Now the LHS :

\\ :\implies\normalsize\sf\dfrac{1}{1+\tan^2A}+\dfrac{1}{1+\cot^2A}

 \\ \bf Using\ \tan^2A=\dfrac{\sin^2A}{\cos^2A},

\\ :\implies\normalsize\sf\dfrac{1}{1+\dfrac{\sin^2A}{cos^2A}}+\dfrac{1}{1+\cot^2A}

 \\ \bf Using\ \cot^2A=\dfrac{\cos^2A}{\sin^2A},

\\ :\implies\normalsize\sf\dfrac{1}{1+\dfrac{\sin^2A}{\cos^2A}}+\dfrac{1}{1+\dfrac{\cos^2A}{\sin^2A}}

Taking LCM of cos²A and 1 = cos²A; Taking LCM of sin²A and 1 = sin²A,

\\ :\implies\normalsize\sf\dfrac{1}{\dfrac{\cos^2A+\sin^2A}{\cos^2A}}+\dfrac{1}{\dfrac{\sin^2A+\cos^2A}{\sin^2A}}

Doing a reciprocal,

\\ :\implies\normalsize\sf1\times\dfrac{\cos^2A}{\cos^2A+\sin^2A}+1\times\dfrac{\sin^2A}{\sin^2A+\cos^2A}

Multiplying cos²A and sin²A by 1,

\\ :\implies\normalsize\sf\dfrac{1\times\cos^2A}{\cos^2A+\sin^2A}+\dfrac{1\times\sin^2A}{\sin^2A+\cos^2A}

\\ :\implies\normalsize\sf\dfrac{\cos^2A}{\cos^2A+\sin^2A}+\dfrac{\sin^2A}{\sin^2A+\cos^2A}

Arranging (sin²A + cos²A) as (cos²A + sin²A),

\\ :\implies\normalsize\sf\dfrac{\cos^2A}{\cos^2A+\sin^2A}+\dfrac{\sin^2A}{\cos^2A+\sin^2A}

Doing LCM,

\\ :\implies\normalsize\sf\dfrac{\cos^2A+\sin^2A}{\cos^2A+\sin^2A}

Cancelling the same terms,

\\ :\implies\normalsize\sf\dfrac{\cancel{\cos^2A+\sin^2A}}{\cancel{\cos^2A+\sin^2A}}

\\ \normalsize\therefore\boxed{\bf LHS=1.}

Here,

1(LHS) = 1(RHS)

LHS = RHS.

  • Hence proved.

 \\ \normalsize\therefore\boxed{\bf\dfrac{1}{1+\tan^2A}+\dfrac{1}{1+\cot^2A}=1\ \ (proved).}

Similar questions
Math, 9 months ago