Prove this pizz..
(1+cotA-cosecA)(1+tanA+secA) = 2
Answers
Answered by
2
Trigonometry,
We have to prove that,
(1+cotA-cosecA)(1+tanA+secA) = 2
Now
LHS = (1+cotA-cosecA)(1+tanA+secA)
= {1+(cosA/sinA)-(1/sinA)}{1+(sinA/cosA)+(1/cosA)}
= {(sinA + cosA - 1)/sinA}{(sinA + cosA + 1)/cosA}
= {(sinA + cosA)² - 1}/sinA.cosA
= (sin²A + cos²A - 1 + 2sinA.cosA)/sinA.cosA
= (1-1+2sinA.cosA)/sinA.cosA
= 2 = RHS [proved]
That's it
Hope it helped (≧∇≦)b
We have to prove that,
(1+cotA-cosecA)(1+tanA+secA) = 2
Now
LHS = (1+cotA-cosecA)(1+tanA+secA)
= {1+(cosA/sinA)-(1/sinA)}{1+(sinA/cosA)+(1/cosA)}
= {(sinA + cosA - 1)/sinA}{(sinA + cosA + 1)/cosA}
= {(sinA + cosA)² - 1}/sinA.cosA
= (sin²A + cos²A - 1 + 2sinA.cosA)/sinA.cosA
= (1-1+2sinA.cosA)/sinA.cosA
= 2 = RHS [proved]
That's it
Hope it helped (≧∇≦)b
Similar questions
Math,
7 months ago
Math,
7 months ago
Math,
1 year ago
Social Sciences,
1 year ago
English,
1 year ago